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Abstract

Background

The complexity and multiscale nature of the mammalian immungomes provides
excellent test bed for the potential of mathematical modelivty ssamulation to facilitat
mechanistic understanding. Historically, mathematical models ofirtitreune responge
focused on subsets of the immune system and/or specific aspectse afedponse.
Mathematical models have been developed for the humoral side of thenexresponse,
for the cellular side, or for cytokine kinetics, but rarely hdkiey been proposed o
encompass the overall system complexity. We propose here a foaknfaw integration o
subset models, based on a system biology approach.

Results

A dynamic simulator, the Fully-integrated Immune Response M@&dRBIM), was built in
stepwise fashion by integrating published subset models and addingfeattgkes. Th
approach used to build the model includes the formulation of the networkeoédtin
species and the subsequent introduction of rate laws to describe @agical process. The
resulting model represents a multi-organ structure, comprisdtedhtget organ where the
immune response takes place, circulating blood, lymphoid T, and lymph@du tiThe cell

types accounted for include macrophages, a few T-cell lineagesofdc, regulatory, helper

1, and helper 2), and B-cell activation to plasma cells. Four diffexgiokines wer
accounted for: IFNy IL-4, IL-10 and IL-12. In addition, generic inflammatory signaie
used to represent the kinetics of IL-1, IL-2, and TFRSell recruitment, differentiatio
replication, apoptosis and migration are described as appropriateefdiffierent cell types.
The model is a hybrid structure containing information from seveamhmalian species. The
structure of the network was built to be physiologically and bioatediy consistent. Rate

laws for all the cellular fate processes, growth factor proolucates and half-lives, together
with antibody production rates and half-lives, are provided. The reseriteonstrate how thjs

framework can be used to integrate mathematical modelaeofmimune response frgm
several published sources and describe qualitative predictions ofl gioib@ane syste
response arising from the integrated, hybrid model. In addition, we Bbewvthe model ¢
be expanded to include novel biological findings. Case studies weredcaut to simulate
TB infection, tumor rejection, response to a blood borne pathogen awdribequences of
accounting for regulatory T-cells.

Conclusions

The final result of this work is a postulated and increasiogiyprehensive representation of
the mammalian immune system, based on physiological knowledge aegttledo furthef
experimental testing and validation. We believe that the intdyradture of FIRM has th
potential to simulate a range of responses under a variety of condftmmsmodeling o
immune responses after tuberculosis (TB) infection to tumor faymat tissues. FIRM als
has the flexibility to be expanded to include both complex and novel immucelogspons
features as our knowledge of the immune system advances.
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Background

Mathematical models are a natural approach to improve our usagirsy of complex
biological systems, and ultimately enabling us to predict thgavior and control them [1].
In particular, the intricacies and nonlinear nature of the maramalmune response have
attracted considerable attention over the years [2], in no smaldparto the role of the
immune response in a variety of relevant human conditions. In addherexistence of a
mathematical model allows one to explore the known differencesnmunity development
between human and non-human species [3] by altering or excludingicspathways, as
dictated by experimental findings. The basic components of intereslkd in principle
include: cellular or cytotoxic responses (i.e., the development sffceth the T-lineage that
attack antigens directly), humoral responses (i.e. the endogermiiscppon of antibodies
from cells of the B-lineage that bind to the antigen receptor angrhés removal) and
signaling features (mainly, but not exclusively, through the cytokine netwrk) [

In general, the development of quantitative models is often based seléicdon of features
of interest and their description in mathematical form, followed thgir functional
integration into a model that can be interrogated and/or used to pestigtes of interest.
Such features can then be compared to experimental data. Similar procedfodsead for
immune response models, but due to the system’s complexity, modelinginanition
efforts have focused on specific subsets of the system, suble asllular responses [5-7],
humoral responses [8,9] and/or cytokine networks [10,11], while sometixcagliag or
simplifying other components from the model. As a general contimeréhe development
of comprehensive models is difficult and has to contend with the atezinetwork nature of
the system, where the addition of one novel component necessarilyesedeiining the
interactions of the new item with the remainder of the network.

Several modeling formalisms have been used in developing models ofithene system.
Historically, these have been mostly categorized as difi@teequation models or agent-
based models. Agent-based models or cellular automata models ohthaemesponse have
attracted great interest [12] since very early studiesdhd@]have been refined and proposed
over the years in a manner that is responsive to new knowledge [14l{E5]. greatest
strength is their flexibility and relative ease of use [16],clvimakes them suitable to model
very complex systems without having to mechanistically spetiéy known component
interactions. Instead, the system is defined in terms of “compgtats”, which are sets of
rules by which individual actors (i.e. populations of cells, or evervishaal cells) are
created, interact and are destroyed. The modeling effort then $oomsenonitoring the
interactions among agents, which gives rise to complex, songeimergent behaviors that,
depending on the rule base, can provide a striking similarity to niygotal evolution of the
system being represented. Such models can then be used to develofs amsveenplex
problems, including therapy optimization [17,18]. As others have pointed2hutidspite
their power, challenges remain with agent-based models, includiray#ilability of widely
accepted software and of model checking and goodness of fit sgsatbgt resemble those
commonly used for differential equation models. Differential equatiodets have provided
tremendous insight in the dynamics of complex immunological netwag&&2(q] and are still
widely used, relatively easier to communicate and more readdyed than agent-based
models. Some of these models can achieve remarkable degremspéxaty and realism
[21]. In addition, differential equations form the backbone of translatjpmaimacokinetic-
pharmacodynamic (PK-PD) models [22,23], the class of models thatilole how drug dose
influences response through quantitatively linking the drug dose to w@epos



(pharmacokinetic [24,25]) and the exposure to response (pharmacodynamia [26INing
system. These historically are the models of choice in drug research arapdearsl

The integration of multi-scale, realistic models of physiolagyh pharmacotherapeutic
models is a desirable goal that would allow more mechangstdictive and overall useful
models for drug research and development [27], in addition to enhancialgaralive efforts
between biology and modeling. This effort is receiving renewteatson through the area of
“systems pharmacology” [28], as explored in two successfuldist@plinary workshops
hosted by the National Institutes of Health in 2008 (http://meetimgyss.nih.gov/?1D=3447)
and 2010 (http://meetings.nigms.nih.gov/?1D=8316). Issues related temfinodel sharing
and model construction are also the purview of the Interagency ModatidgAnalysis
Group (IMAG) (http://www.imagwiki.nibib.nih.gov). Building these models actiyaand
efficiently represents a significant challenge. This has pted the development of
sophisticated software to facilitate integration of separatamedels [29] and parallel
computation [30].

The recent availability of computational environments to functionadignect submodels
without having to write ad hoc computer code is well complementetidogldvelopment of
approaches to supervised “monolithic” [30] model integration. In our, Gaséfferential

equation framework was chosen for the development of an integratednenresponse
simulator, coupled with a useful framework, found in systems biology,infiegrating

multiple subset models into a coherent whole. In this framework, cavibectatrices are

built to describe the global network structure, followed by intrddacof rate laws to
seamlessly integrate multiple biological processes [31,32].

The Fully-integrated Immune Response Modeling (FIRM) simulatardgferential equation
based integration of multiple existing models of the immune sygEey10]. It accounts for
both the humoral and cellular immune response systems and attenpassitaoniously
represent the spatially distributed nature of the system. Theofythas integrated model is to
specify antigen exposure over time and calculate predicted antibedis land cell
concentrations following biological perturbations such as immunizaifomfection. To
develop FIRM, we used a pharmacokinetic / pharmacodynamic modelingaappto
combine previously published individual models of humoral and cellular respwits
antigen exposure. FIRM includes both the antigen-specific antibodiesedinpopulations,
and accounts for cytokines and adjuvant components as needed. It is adoyistidict
incorporating structures and parameter values from published miogeldtiple mammalian
species.

This report outlines the stepwise integration of networks desgribe cellular dynamics for
both T and B-cell responses to bacterial infections and to tumothgiova target organ. In
addition, to illustrate the incorporation of novel mechanisms, we pr@makategrate within
the framework a new hypothesized model of regulatory T-cell ikmeiccounting for
immunoevasion.



Methods

Model formulation and content

The process of building an integrated simulator starts with theittef of the underlying
physiological structure. This preliminarily defines the emgstinterrelations among all the
variables of interest as a “superset” of cellular and madecgpbpulations and reactions.
Second, all the cellular and molecular state variables arefiddrand the interrelationships
(transitions) between them determined. The structure of the ristwsthereby specified.
Third, the mathematical forms of the equations that describeukesflare then formulated
and their numerical values determined (from literature oriegistata). Usually, the first two
steps involve the determination and selection of existing relationgthigs have a
physiological basis. As such, they are somewhat easier thathitdestep, where such
relationships need to be made specific and quantitative. The akgilaof plausible
numerical values is a well-known rate limiting step in the dafimiand assembly of kinetic
models, and in the rest of this section we will outline the appra&cfollowed to inform
FIRM’s parameterization.

Mathematical formalism

All the models we considered for integration obey the general gogeegjuation to describe
dynamics of cell and mass balance models:

dx/dt = S.v(x; k)

wherex is the vector of state variables (concentrations of variousypebs and molecules)
andyv is the vector of fluxes from one state to the next (i.e. p@mprocesses, reaction rates,
cellular fate processes, etc., expressed in concentrations péme)itS is a matrix that
describes the structure of the network and its topology. Every oadiui® represents a flux
and every row represents a state variable. The vkatontains the numerical values of the
kinetic and physical constants (often, but not necessarily, expresseils of inverse time).

In general, the vector of fluxes is a function of the state variables and the kinetic and
physical constants characterizing transport and reaction processes.

Three published models of the immune response, each highlighting mliffeatures of the
system [5,8,10], were identified for inclusion in FIRM. The reconstdicetwork for the
immune response is shown in Figure 1A for the cell populations involvén isystem and

in Figure 1B for the cytokines relevant to the model. An explanatidheofbbreviations is
included in the figure legends. Volume heterogeneity in the modatdeunted for and
described in the next section. In addition, there were fluxes iredoastructed network that
are inactive in the final FIRM model's computational (executabig)lementation. The
reasons for inactive fluxes vary, including for example: redundamegely their function is
accounted for elsewhere in the model; removal or inactivation rajde; lack of data to
properly inform the flux. Full details of inactive fluxes, and teasons for deactivation, can
be found in the Supplemental Material (Additional file 1: Table S8)ce some fluxes were
inactivated, not all the nodes we initially considered as partRiYIrwere active in the final
structure: specifically, the function of Mt (macrophages functioning as antigen presenting
cells) is incorporated in the dendritic cell population and not explicitly aceddat; and, the
function of Ty, in the humoral response was not included due to lack of quantitative



information regarding this component. Consequently, the relevant cytaketork
components are also inactive.

Figure 1 The reconstructed FIRM network. 1A. The final FIRM formulation includes
inactive fluxes and nodes that are included for completenesssifighre. Symbols are as
follows: TUMOR, tumor mass; DEBRIS, tumor cell debris; MAPQtigen-presenting
macrophages; MA, activated macrophages; MR, resting macrophages;infécted
macrophages; P, intracellular bacteria; PE, extracellulaiebarIDC, immature dendritic
cells; MDC, mature dendritic cells; T, naive T-cells; TCRptoxic precursor T-cells; TC,
cytotoxic T-cells; THP, helper precursor T-calls TH1, T-helpeells; TH2, T-helper 2 cells;
AB, antibody; B, naive B-cells; BA, activated B-cells; BM, gy B-cells; BP, plasma B-
cells; Treg, regulatory T-cells. See the Supplemental Métésr the full detailslB. The
cytokine activity of the FIRM network. Solid green arrows repreggoduction. Dashed
green arrows represent up-regulation of a flux, and dashed redsarepresent down-
regulation of a flux. The graph is a superset of Figure 1A, whdokines are superimposed
to the previously defined cell populations. Symbols are as follows:inig]eukin-12; ¥,
interferon-gamma; 110, interleukin-10; 14, interleukin 4; T@Rumor growth factor beta.

The matrixS, the state variables and the fluxes corresponding to the froatwse of the

FIRM model are found in supplemental Additional file 1: Tables SA,a8d S3. The
mathematical form of all the flux variables are given in Aidddl file 1: Table S4, and the
numerical values and their literature sources are found in Additional file 1: $atdad S6.

Spatial distribution features:

To account for known features of the spatial distribution of the immaesponse components
in our simulations in a parsimonious manner, the FIRM model hasdparate tissue spaces
where the cell and cytokine populations can travel: lung (assuntealve a volume of 1000
mL), blood (4500 mL), lymphoid tissues relevant to the cellular (10 anid humoral
response (150 mL) and the sites of immune recognition (4500 mL). As popsilaf cells
and molecules travel between biological spaces, their concentratiensultiplied by the
respective volumes of distribution so as to maintain mass balahte.was particularly
important for the population of infected macrophages, which changeamitally as
bacterial infection progresses and turns out to have a time-deperat&itle volume of
distribution whose features needed to be accounted for in the simulatiditioAal file 1:
Table S7 in the Supplementary Material contains the various tissue space volumes

It is worth noting that this is a parsimonious representation siocaccurately represent
spatially differentiated behaviors, one would have to define biologgates for each
spatially (and functionally) separate component of each organsoetthat has a distinct
pattern or behavior from other parts of the organ or tissue under aatisideThese spaces
would be defined so as to have different volumes, rate constants éssduldy, etc., to
reflect their heterogeneous physical structure and, givenuhwer of parameters required,
would require detailed experimental information at the cellutar molecular level. In this
sense, FIRM is a parsimonious model and does not reach this leyelnofiarity, although
the model structure is amenable to be extended and incorporate suclerabions where
warranted, required by the purpose of the modeling exercise and supported by.the data



Simulation platform and integration procedure:

Mathematica (Wolfram Research, Champaign, IL) was used asdtel-building platform.

The integrated model was assembled in a stepwise fashion.i&dlgithe concentration
and flux vectors in the model structure were populated step-bywstepthe appropriate
features and components, as illustrated in Figure 2. FIRM wasrbMiathematica 7.0. The
Mathematica workbook that resulted was used to generate all gnapins paper from FIRM

simulations. The simulator is portable to other simulation platforemsMatlab (The

Mathworks, Natick, MA) version of the FIRM simulator was also gateel. Additional file

1: Tables S1 to S6 contain a full specification of the FIRM satou| suitable for
implementation in other matrix languages.

Figure 2 Firm integration formalism. This figure summarizes the plan devised for the
development of FIRM. The oval at the top represents the method of budighiagnic models
that was employed to construct FIRM. At each step, the subset model includedsean ba
the left, and the major cell populations covered in each step isealtbn the right. MK
refers the Marino-Kirschner model (including resting macrophages Rttivated
macrophages M infected macrophages MT-helper 1 cells d;, T-helper 2 cells
dendritic cells DC and pathogen [10]), DB refers to the DeBoet. en@del (including
resting macrophages gylactivated macrophagesaMT-helper 1 cells {;, cytotoxic T-cells
Tc and Tumor [5]), and BL refers to the Bell model (which includesven®-cells B,
activated B-cells B, memory B-cells B, plasma B-cells Band Antigen [8]). “Pathogen”
indicates bacterial infection, while “Antigen” refers to vical other small antigen infection.
The partial overlap of the models provides a roadmap to integratioch Wwowever needs to
take into account the diversity of formulations used in the modelsdount for essentially
the same immune response features.

Results and discussion

(1) Procedure for integrating multiple dynamic modés from different sources

As described in the Methods section, the dynamic simulator is ssquteas a series of
balance equations. Mathematically:

dx/dt = S.v(x; k)

wherex is the vector of state variables (cell types and moleculecotrations) and is the
vector of fluxes from one state to the next (i.e., transport psese reaction rates, cellular
fate processes, etcS.is a matrix that describes the structure of the network aridgblogy.
Every column inS represents a flux and every row represents a state \aridie vectok
contains the numerical values of the kinetic and physical constdr@sontents of all these
mathematical objects are found in Additional file 1: Tables Sbi¢&ometric matrix),
Additional file 1: Table S2 (variable list), Additional file 1: Gla S3 (flux list), Additional
file 1: Table S4 (rate laws), Additional file 1: Table S5 (kinetonstant values), and
Additional file 1: Table S6 (miscellaneous parameter values).

The reconstructed network is shown in Figure 1A. It includeshallmajor T and B-cell
types, the pathogens (antigens), as well as tumor and its debrisedtit@tory effects of the
major inflammatory growth factors and cytokines are shownigurgé 1B. These graphs



highlight the boundaries of FIRM. The processes that we consideretliasion have been
described multiple times (see e.qg. figure in [33] for a desoripténd relate to humoral and
adaptive immunity. Briefly, the humoral side of the system desctite activity of B-cells

that, when in contact with an antigen/pathogen, secrete antibobiebk are essentially a
secreted version of their receptor compatible with the antigdr®.antibodies bind to the
antigens and neutralize them. The link between the humoral anélthiarccomponents of

the system is provided by helper T-cells, which activate B-.c€His function is currently not
included in the model since it was not a part of the constituent sulsnaddhe! cellular side

starts with naive T-cells recognizing antigen epitopes througigeantpresentation via
dendritic cells and macrophages and subsequently developing adfioatl response to the
antigen. This process is particularly important when the pathogereal, such as in cancer
and bacterial immunity, which are both described in FIRM. T-celtsalso differentiate to

regulatory T-cells, which essentially mute features of the immune response

The FIRM simulator was built in a step-by-step fashion, sunzexdin Figure 2, from both
constituent models that have appeared in the literature [5,8,10] and neseamsms. A
summary of those steps is below.

Immune response to tuberculosis (TB) infection [10]: Celular response to bacterial
challenge. The model integration in FIRM started with a published model fomf&:tion of
the lung (by Marino and Kirschner, hereafter the MK model). Thalel described the
activation of macrophages, their infection, and the antigen presertgitabendritic cells that
leads to differentiation of T-cells in lymphoid tissue; thesdésdblen migrate to the lung
where they differentiate into T1 and T2 helper cells. The scophi®fsubset model is
described in Figure 3. The MK model also included a rather detaf@ésentation of the
cytokine signaling network following infection, which is not shown imgufe 1A for
simplicity (but is shown in Figure 1B).

Figure 3 The individual areas of influence of the three original mdels (MK, DB and
BL) in relation to the FIRM network structure. There was overlap in the content of the
original models, exemplified here by the overlapping shaded afé¢he MK ([10]) and DB
([5]) models (light green). Nodes not encompassed by a shadedrargctive in the final
FIRM structure but have been identified as connections among modekrea reported for
completeness. See the Supplemental Material for full details on inacthes fand nodes.

The MK model state variables and fluxes were introduced into ¢twork and used to
specify the x and v vectors in the overall mass-balance modsIwEs done in a step-wise
fashion and the process was quality controlled at each step. Bteeiysure quality control
of the implemented model, all fluxes in the network are turnedxc#@ one at a time (the
one that needs to be examined) and conservation of mass is checké&tis is repeated
every time a new population of either cells or molecules iedoted in the model, thus
ensuring that no arbitrary gains or losses occurred at any stgg doodel building. A
sample QC/QA document is provided in Additional file 1: Figure S10.€Thare several
issues and simplifications associated with mapping the MK madel the unified network
structure at the basis of FIRM. These included changes in basal Gtdich are calculated
analytically as functions of parameter values), accounting ofpoglulation dynamics to
obey mass balance (specifically, macrophages and bactedigcaounting for the variable
volume of distribution of the infected macrophages and for the appropolat@e ratios for
cell and molecule migration. As a final check, the simulatiohshis initial model were
compared with those available from the original publication (Additidifall: Figure S9).



While the agreement was not exact, this was to be expectedtgatechanges were made to
the original model formulation. Details regarding the mapping ofMkKe model onto the
FIRM framework are provided in the Table 1.



Table 1Overall summary of integration issues
Integration issues resolved with the mapping of the Integration issues resolved with the integration of the DB Integration issues resolved with the integratior

MK model [Ref. 10 onto the FIRM network model [Ref. 5] with the MK model [Ref. 10| of the BL model [Ref. 8] into the FIRM
structure framework comprised of the DB model [Ref5]
and the MK model [Ref. 1(]
» Added basal state levels of resting macrophages amemoved “HTL” (Ty;) from activation of macrophages. tBonversion to B cells has the same rate as the
IDC using MK latency parameter values: death of B,.
- Mg[0] =5 * 1¢ cells  Using DB value for Mhalf-life.  Antibody produced by BB, in blood, and B
in lymphoid B.
-IDC [0] = 5 * 10 cells -1z = 1 day* » Expansion of the BL model due to the relaxation

of equilibrium assumptions required the creation
of variables x;-x5; and fluxes ¥-Vvioc.
« Combined bursting ¢y and natural death {) of » Created constant recruitment gfsBind Tyr in the lymphoid T, ¢ Created “antigen” variable in blood and Site of
infected macrophages into one flux)(vl he reaction in fluxes \o and v, respectively, arlagous to 11 and 12 from tkrecognition.
rate will be the summation of the two individual DB model.
reaction rates.

« Introduced M (Infected Macrophages) as a separatdl — pso, 12— p21 - “Antigen” can be either a tumor debris or a

space with a variable volume: bacteria cell, they become a part

- Volumay, = 8*10° * x5 » Accounted for Ep presence in the blood, created a separate- of the “antigen” pool once they enter the blood
variable x:.

* Fixed bacteria accounting issues: » Temporarily changed HIl ifTFACTOR to HTLP (Tr). - Permeates from lung to blood, and from bloo

Site
- In the MK model, half of the amount of bacteria * Using DB value for M half-life. » Created receptor sites on select B cell
released during bursting was required to infect one populations.

macrophage. These two amounts have been made

independent, but they are curtly set to 25 bacteria fi

infection and 50 bacteria for bursting. These are the
same values used in the MK model, but they can be
changed easily.




- Bursting (\) is based on the ratio of intracellular - n,0=0.05 dayL - X1, X17, @Nd Xg have receptor sites
bacteria to infected macrophagegX®. The bursting

will occur at a greater rate as the ratio approaches a set

number (the macrophage’s capacity). This capacity is

currently set to 50.

- Bursting () releases xz extracellular bacteria intor Redefined FACTOR with HTL (). - Receptor sites have 2 states: antigen-bound and

the system, instead of a fixed number. free

- T-cell induced apoptosis {vreleases stxs » Added Ty; (HTL) proliferation from the DB model as a negal* Expanded antigen-B cell interaction to include

extracellular bacteria into the system. term to the death fluxyy. receptor sites and binding events.

- Itis important to note thagks is a time-dependent « Modeled differentiation of naive T cells t@pl{vso) to mirror - All antigen-receptor binding events occur at the

ratio. the action of ¥ from the MK model. same rate

« Combined naive T cell death and recirculation fromModified Mapc from the DB model. Mpc and its corresponding The receptor-antigen binding event is a

the MK model into one clearance fluxfv The fluxes (7, Vsg) Will remain inactive and undefined. The reversible reaction

reaction rate will be the summation of the two functionality of Mypc described in the DB model, using the

individual reaction rates. variable INFLAM, will be merged with the dendritic cells:

« Added basal state levels of resting macrophages amdaided term to recruitment of IDC cells;§vusing INFLAM as - x,q is assumed to have the same receptor state as

IDC using MK latency parameter values but using therigger. X1g

new clearance flux of naive T cellsdv

- T[0] = 98,039 cells m (P21 + pso)/2 * INFLAM * Expanded antigen-antibody interactions to
include dynamic single- and double-bound states.

» Modified rate law w.. The MK formulation allowed - Added term to migration/maturation of IDCg4{wusing - All antigen-antibody binding events occur at the

for negative proliferation. INFLAM as a trigger. same rate

» Accounted for T presence in the blood, created am Used term from MK stimulation, but replacegd(R:) with - All bound antibody states are cleared at the ¢

separate variable x INFLAM rate

» Used volume ratios to properly account for cell  « Cut off an INFLAM feedback loop by globally redefining - Binding events occur in both the blood (with

migrations across tissue space borders. INFLAM without HTL (Ty1) when substituting in FACTOR.  “antigen”) and the lung (with extracellular

Now, the only variable that determines INFLAM is turboirden bacteria)
The basic premise of the INFLAM loop is an increase in

INFLAM causes dendritic cells to produce more helper T cells,

and the creation of these helper T cells caused FACTOR to
increase, which in turn caused INFLAM to increase.




* Eliminated flux ¥o. The migration flux of T, to the < Added new fluxes to FIRM structure: « Defined initial conditions witHydital

blood (wy) that was to be added with the B cell solutions for B cells and B cell free receptors sites.
response will take its place;;will take the death rate

of va (0.3333 day) as its reaction rate. Having two

fluxes drain the I, population was leaving the;J

levels in the lung much too low and ineffective.

« Added basal state levels of IL-12 in the lung, - Vg4 — death of Tp in the blood * Permeation of tumor debris to blood is turned
produced by the basal levels okM off.
IL-12[0] = 5%10° (Grsdm79) - Vg5 — death of Ep in the blood - Tumor-antibody interaction lacks definition at
this time
- vgg — proliferation of T, in the lung (removed negative term
from Vag)

» Defined initial conditions with analytical solutions for:

- Mg, IDC, T, Typ in the lymphoid T, Tz in the blood, Erin the
lymphoid T, Ter in the blood, IL-12 in the lung




Immune response to tumor formation [5]: Cellular response to tumor challenge. The second

subset model identified for inclusion in the integrated model (IBoeeet al., hereafter the
DB model) described the inflammation response to the preséracéumor. Its components
were the growth of tumor mass, the activation of macrophages in redpatie tumor cells,

the proliferation and differentiation of cytotoxic and T1 helper calsl the killing of tumor

cells creating tumor debris. The original formulation of this stlpsodel had all tracked
populations in a single biological space; therefore, the cell papnsadescribed in the model
had to be mapped to their appropriate organs. The scope of this mothel seen in Figure
3, together with its overlap and points of contact with the MK modete(xgain, the state
variables and fluxes associated with the content of this subset wedeadded to the model
network.

The inclusion of the DB model marks the first integration in theMrIisystem of two
separately developed and reported kinetic models (MK and DB). Tegration of two
kinetic models resulted in some complexities, reflecting in ttine: state of biological
knowledge revealed by the models, the assumptions made, the strudtueenefwork, and
the detail of the quantitative information. The process of integyatiodels from various
sources and built for different mammalian species requirescéx@tid sometimes implicit
biological and structural assumptions. We summarized those choitiesegsation issues”
and they are reported in detail in the Table 1. The resolution ofattmyissues is critical to
the construction of an integrated model such as FIRM. For exampleBtmeodel included
processes and parameters which tended to be descriptive as opposedhémiste,
reflecting the knowledge of immunology at the time. Thereforeisthees involved with the
addition of the DB model included integrating phenomenological paresnete the FIRM
state variable and rate law structure (and sometimes modifyerg), selecting a value for
kinetic constants that appear in both models, and including new netwosds,flmostly
cellular, as necessary to integrate the models to ultimately ensunedafamass.

B-cell response to antigen [8]: Humoral response to antigen challenge. The third subset
model that was included in FIRM (by Bell, hereafter the BL modetails the B-cell and
antigen response to the presence of an antigen in the system. dniddde BL model is the
exposure of naive B-cells to antigen, the activation of B-dadisrigrate to the lymphoid B
via the blood, the differentiation of activated B-cells to plasmanagihory B-cells, and the
production of antibodies by said B-cells. Lastly, the antibodies woekrtonate the antigen
from the blood and the target organ. This model’'s components are agaim ishBigure 3,
which also highlights commonalities with the MK and DB models.

Again, the integration of the BL subset model into the frameworklBM led to some
integration issues. The BL model had a rich level of moleculaildehen describing the
interaction of B-cell receptors, antibodies, and antigens. Thesadtbers were simplified in
the original model through the use of quasi-equilibrium assumptiongnGhe level of
granularity in FIRM, these assumptions could be relaxed and the taillsdef the underlying
molecular processes are described. Therefore, the network stractommodates antigen
and antibody binding (Figure 4). The inclusion of this subset model indtveork was a
major integration issue with FIRM, since the network had to be aniiEty expanded to
include all of these detailed processes. Integration issuespamead in detail in the Table 1.
Briefly, antigen-antibody binding reactions (shown in Figure nEjude: a free antibody
binding to a free antigen creating a single-bound antibody; a single bound antitadiy bd

a free antigen creating a double-bound antibody; the removal/ateacdra single-bound
antibody; and the removal/clearance of a double-bound antibody.



Figure 4 Scope and details of the BL model in the context of the FM® network. The
model [8] included detailed information on the interactions of antigemngodies, and B-cell
receptor sites of the humoral response. Symbols are as folBweaive B-cells; BA,
activated B-cells; BP, plasma B-cells; BM, memory B-cdlisalent antibodies are released
by BA and BP in the lymphoid B organs and bind antigens both in blood andtéwggt
organ) tissues. The antigen binds to naive and activated B-cellsrantatds the formation
of antibody.

The incorporation of the BL model essentially completed the FKMcture based on
published models. Figure 5 shows a simulation of the fully integr&t®M model at
nominal parameter values (Additional file 1. Tables S5 and S6s iBha base case
simulation with an initial load of 100,000 infecting bacterial callghe target organ. The
bacteria cells are allowed to migrate into the blood as Wi triggering a strong antibody
response. The B-cell receptor density for the bacterissismaed to be fomolecules/mL, in
keeping with the BL model.

Figure 5 Cellular and Humoral Response to Antigen PresentationThe cellular (upper
panel) and humoral (lower panel) response of the fully-integratBd Fimulator with
nominal parameter values and an initial load of 100,000 antigen molenutes target
organ, which are allowed to infect macrophages and migrate into the Mdabk the
cellular response is small and has little to no effect onntleetion, the humoral response is
strong and effectively eliminates the infection.

It should be mentioned at this point that the constituent models compdBkpvirere not
necessarily tailored to a particular animal species. The Bileindescription mentions data
being obtained in rabbits, but it also states that the model recép#tidssential features of
the mammalian immune response. The DB model is based on dateeinwhile the MK
model was built to be applicable to humans. This makes FIRM adhgiwdel containing
features of a few mammalian species. That being said, validatimodéls against data is a
tool of paramount importance in model development. FIRM provides predicfainsing
and extent of immune respone, which can be compared against expdrola&nt&Vhile we
propose here the FIRM structure and have strived to maintain temtsif units across the
models, we make no attempt at validation and later we proposeaspps to test this
important question.

Addition of Treg and TGF$: With the integration of the MK, DB, and BL models, we have
created a platform with which basic immunological simulationsbeaperformed. The FIRM
platform is flexible enough to easily introduce new information angiplogical responses.
This section demonstrates that principle through addition of regulatory T-Egys Treg play

an important role in the immune system'’s response to a tunggar@ a rather new discovery
in the immunological field, and considered to be of great importarfeeefore, Joq were
selected to be the first addition when expanding the FIRM platf@yorid the original
publications.

There are two sources ofed in the body: the first source is from the lymphoid T and the
second source is a resident population in the target tissue [g#]miich like the Ep and
Thp, Will also have a constant differentiation from the naive T-cell population inrighlyid

T that will travel into the blood. {d; account for 5%-10% of the T-cells in the blood in a
normal state [34]. The differentiation in the lymphoid T was caldd appropriately to
reflect these levels. Once theglreach the site of the tumor, they produce T5E-cytokine



that has a down-regulatory effect on the proliferation of cytotdxtells. Cytotoxic T-cells
assist in killing tumor cells, so it stands to reason that turetls play a role in the
proliferation of Teg in the target tissue. A visual representation of theg dddition can be
seen in Figure 6. dy exist in the lymphoid B, the blood and the target organ. Naivell§-c
differentiate to Teg in the lymphoid T; they migrate to the blood where they are sutmect
removal or recruitment to the target organ; they can also prodifarahe target organ. TGF-
B is produced and decays in the target organ, where it exeeféeits on T-cell kinetics. The
majority of rates and parameters used in the rate laws assigned values based on
approximations. These approximations were picked to be similar teathes of the rates
associated with other T-cell lineages and cytokines in FIRM.eKaet numerical values of
the rates and parameters are still a subject of evaluattbaxamination of relevant literature
and future experimentation.

Figure 6 The T4 kinetic model incorporated in FIRM. The model accounts forc]
presence in the lymphoid T (where they differentiate from na¥eell§), the blood (where
they migrate and are subject to removal or recruitment tdaifget organ) and the target
organ (where they proliferate). The kinetics of TBFRre similarly accounted for. .l
regulatory T-cells; TGH, tumor growth factor beta; other abbreviations as in Figurarich
Figure 1B. See text for details.

The basal state: As with all kinetic models, FIRM has a basal (unperturbed).shaténis
particular case, the basal state represents the immune sy@teponents’ baselines when
there is no antigen present. Such a basal state reflecty stiedel homeostasis and was
calculated using the nominal parameters and running the modehlite siteady state
conditions. Calculated basal state cell populations includeresling macrophages in the
target organ, 5 x @endritic cells in the target organ, ~8 ¥ b@ive T-cells in the lymphoid

T, ~1C T helper precursor cells in the lymphoid T, 3 ¥ Tohelper precursor t cells in the
blood, ~2 x 10 naive B-cells in the site of recognition, 2Ifytotoxic T precursors in the
lymphoid T, 5 x 16 cytotoxic T precursors in the blood, ~3 ¥ Iolecules of IL-12 and ~3

x 107 of TGF-Beta in the target organ, 1D, in the blood, 2 x 1in the lymphoid T and
10° in the target organ, and ~2 x'1fdee receptor sites on the naive B-cells in the site of
recognition. The &gy in the blood account for about 9.1% of all T cells circulating in the
blood [34]. In the basal state, the system is free of antigensthendfore, antibodies. This
basal state can then be perturbed by exposure to antigen mefleetiious stimuli or
pathological situations. The response to one or many antigens can be simulated.

The final version of the FIRM simulator has 55 nodes (cells antoaes), 107 distinct
processes and 171 parameters. As defined and with the postulatedianteraicd parameter
values described above, the FIRM simulator is an initial ste@rttsva simulator of the
immune response capable of representing a variety of putative challf€ogismonstrate the
use of FIRM we present four case studies that illustrate its differeéatdsand capabilities.

(2) Use of the simulator — case studies

Based on the full model, changes in network structure and panavnadies can be defined to
mimic known occurrences in immune response modulation. Within FIRM, etehpl
different situations involving immune system cells, and foreign andgemdais molecules,
can be modeled in a few steps. Deactivating one or two fluxeslreatically change the
conditions of a simulation. Among many possible simulations, four casedeoést are
explored:



1. TB infection;

2. Blood borne pathogen infection;
3. Spontaneous tumor rejection;

4. Influence of e, on tumor rejection.

The first two case studies represent confirmatory simulations for compavith the original
MK and BL model results.

TB infection

To simulate a pure TB infection, 100,000 extracellular bacteria wimegluced into the lung
(target organ) and flux gy was deactivated. Flux g¥ represents the permeation of
extracellular bacteria between the target organ and the blogur€FLA). Flux y; was thus
deactivated to prevent the bacteria from migrating away ft@riung. The TB infection is
known to stay local in the lung and not permeate into the blood. FIRMhgassimulated
with its nominal parameters.

As shown by the MK model, a TB infection is thought to be dealt exitlusively by the
cellular response with no response from the humoral system. A chirdeiction is
simulated. The T-cell response that is solicited by the imnsyaeem is enough to prevent
runaway growth by the bacterial population in the lung. Even though Hoéaceesponse
prevents runaway growth, the levels of infected macrophages &er fatge and stay
constant. The results can be seen in Figure 7. As one would expesimthation results
closely resemble the MK model, which was specifically developedpresent TB [10]. This
simulation illustrates that the integrated FIRM can stdhptulate the trends initially found
with the MK model.

Figure 7 TB infection simulation. A simulation of an intracellular bacterial infection with
an initial condition of 100,000 bacteria in the target organ. See text for details.

Blood borne pathogen

In this simulation, a blood borne pathogen originates in the blood andnsecmnfined
within the circulation. For simplicity, the increase in anti¢mad prior to the induction of an
immune response is represented as a spike (pulse) increase. Mpleexd this situation
would be a viral infection. The pathogen does not permeate into the tssofect, for
example, resident macrophages. To simulate a blood borne pathogen infliabs s, and
vgg were deactivated. These two fluxes model the access of rabigeeen the target organ

100,000 antigen molecules in the blood. The results of the simulation can be seen in Figure 8.

Figure 8 Blood borne pathogen simulation A simulation using nominal parameter values
and an initial condition of 100,000 antigen molecules limited to the bloodstréaim
simulation is different from that in Figure 5, where the antiggreared in the target organ.
See text for details.

The humoral (B-cell) response was used by FIRM to eliminaténfeetion. In fact, in the
case study, as expected, the cellular response is virtuallgxistent. The antigens never
come in contact with the dendritic cells in the tissue. Therethexe is little antigen



presentation to the T-cells in the lymphoid T to drive differemmimatf the naive T-cells. The
graphs in Figure 8 show a fast humoral response flooding the bloodsvwegheantibodies.
The antigens are quickly bound to the antibodies in the blood and are remowvethé
system as antibody-antigen complexes. This simulation resethbléghavior of the original
BL model, confirming the performance of the integrated FIRM reggathe individual
submodels.

Tumor removal

Since no tumor-antibody interaction is defined in FIRM at this ptitthe individual
models, MK, DB or BL, lacked a mechanistic description of antibodgiated cell kill),
simulations of tumors will not include migration of tumor antigereb(i in the DB model)
into the blood from the target organ. Therefore, the flgixwas deactivated for this case
study. Additionally, we changed the half-life of all T helpeiscé 0.02 day from 0.3333
day’ (the remaining reaction rates were left at the nominalnpetier values). The updated
half-life was derived from the DB model, while the previous h#dfivas derived from the
MK model. As a justification, through successive model runs we ob$d¢hat an elevated
half-life for the T-cells prevented them from encouragingifaation of cytotoxic T-cells
and therefore prevented tumor kill. This shows that tumor removal byntin@ne system
may be influenced by the kinetics of these cells and also poifdstires of the model that
greatly influence its predictions.

FIRM was then simulated with one initial tumor cell in thegédrorgan. This simulation
scenario (Figure 9) highlights the multi-scale temporal chanatits of the FIRM simulator.
Initially, the tumor grows at a rapid rate, seemingly unchecKee growth is quickly
suppressed by a macrophage response. The activated macrophdgeslegatat which the
tumor cells are no longer growing, rather settling around al gopulation size. After this
initial response by the macrophages, the presence of the tumearsrggellular response.
This T-cell response requires a longer time period in ordprdiiferate to a population size
capable of eliminating tumor cells in the target organ. Once yta#ogic T-cells reach a
critical level, the cellular response is able to eliminhtetumor. Once the tumor has been
eradicated, the cell populations move back to their steady stats.|&his simulation calls
into play the features of the DB model[5], with one importantediiice. While the DB
model contained phenomenological features, these have been mostlgedea the
integrated FIRM with more mechanistic cell populations and fluxbich better reflect
physiology. It is reassuring that the outcome of the simulatiserbles the original model,
but it does so with more mechanistic detail about the cellular gibgus involved. Generic
inflammatory signals are still used to represent the kinefitls-1 and IL-2. It is worthwhile

to mention that tumor secretion of TGRwould be expected to contribute to these processes
by promoting immunoevasion: this is discussed in the next case sthdye regulatory T-
cells are integrated in the simulation.

Figure 9 Tumor removal simulation. A simulation of spontaneous tumor growth and
immune-mediated tumor elimination. See text for details.

What truly happens in the mammalian immune system following estgdl with a single
proliferating tumor cell is unknown. However, it has been assumedhé&nmune system
regularly removes tumor cells that may arise spontaneously (thecept of
immunosurveillance[35]). If anything, this simulation highlights tbee rplayed by the T
helper population interaction with the tumor. In our hands, a changesirpdipulation’s



reported half life to 0.02 ddyfrom 0.3333 day was sufficient to produce a more realistic
output; however, the model structure may also have been incorredlfiespen the original
models. Overall, these considerations point to experimental and fesgasas of focus. In
addition, other parameters in the model may have similar strohgermees on the model
predictions.

Influence of T,eg ON tumor rejection

Regulatory T-cells are resident in tissues and can also ivatadtthrough differentiation in
lymph nodes through antigen presentation by dendritic cells, with qudasee migration to

the site of action. Several cytokines are now known to be involved snptbcess. The
introduction of Tegand TGFB into the system has a profound effect, as can be seen in Figure
10. The tumor profiles behave similarly as to the previous scenarlcabotit day 45. The
tumor experiences growth and is then rejected. The delay injdotior of the tumor is due

to the hampered proliferation of the T-cell population in the targgtnprcaused by having
added Teqg and TGFB dynamics to the model. It essentially takes the T-cell ptpolaver

60 days to reach an effective tumor killing level, while previously that took only 45 days.

Figure 10 Tumor removal with regulatory T-cells. This figure shows a modified version of
Figure 7 after &g and TGFB have been introduced in the model. from left to right and top to
bottom, the time profiles of regulatory T-cells, T@Ftumor cells, and cytotoxic T-cells are
shown. See text for details.

The Tg addition had a profound effect on how the comprehensive system redbis to
presence of a tumor. As such, it is a good example of how the FiRMasor can be
expanded to include additional, more realistic characteristicenwiunological responses.
This addition reduces to practice how FIRM could be expanded towardétithate goal of
building a more comprehensive mathematical representation of immune sgatarad.

Conclusions

Inflammation and immune response are thought to be a common denonimatoaman
disease. A comprehensive simulator of the immune response in humass tissthus a
needed tool for a variety of applications. FIRM was undertaken asiteh step towards
meeting this need. The development and use of FIRM showed that: (1) alexattyped and
proven methods from systems biology could be used to facilitate thérumtizs of a
platform for the integration of subset models each focusing on ardeaf the immune
response; (2) these methods can be successfully implemented tatgeme integrated
simulator; and (3) that FIRM can account for a variety of chgle to the human immune
system through its multi-scale characteristics. A stinectsuch as FIRM can be used
prospectively for iterative model building, as the scope of the siatuggows and as new
discoveries are made and integrated in the framework; atrie tsae, the predictions from
FIRM can be compared against experimental data, to improve the amajatonsequently,
mechanistic understanding of its underlying biology.

As molecular systems biology has developed over the past ddaggkescale and even
genome-scale models have been formulated [36]. These models aned fdrom
reconstructed networks based on biochemical, genetic and genomic dataysahdve been
able to compute a variety of phenotypic functions. This process has paggcularly



successful for metabolic models [37]. Since such models areyn@stéd on the universal
principles of flux or mass balance, this process can be appligdteas analysis of complex
dynamic systems, such as the immune response. We were abledid-IRM based on a
reconstructed network of the main cellular and molecular componentsvedvah the
immune response. The key challenge over the individual component notieds FIRM is
built on multiple tissue spaces of different volumes, even varyingmed in some cases.
Additionally, the model equations are formulated in terms of total samfréach variable in a
given tissue space. This allows for complete and accurate acgpamid balancing of all
state variables. Concentrations of cellular and molecular speaie then be computed by
simply dividing the total amount at each time point with the bicllgrolume of the space,
thus allowing for direct comparison to experimental measurements.

The reconstructed network was then populated with information fromspellimodels that
describe subsets of the immune response. These published models dodttméed
information about the mathematical form of the flux equations. In additiumerical values
for all the parameters are provided in these subset modelarth&gpically obtained from
measurements or the available experimental literature.

The putative reconstructed network allows the mapping of multiple sotusagls and their
ready integration under a unified format. In principle this is gkmrocess, but in practice
it has been implemented as a stepwise procedure that rewetidsistegration challenges as
additional subset cellular and regulatory processes are addedof@he major integration
problems arises when discrepancies in the numerical valudsefsaine parameter appear in
different subset models. For example, in some cases, assumptionghebphysiological
processes accounted for in a subset model were not needed in thelmmme network
reconstruction and thus had to be relaxed or otherwise modified (juah axample,
eliminating “HTL” (TH1) from macrophage activation in the DB mbd&his was relatively
easy to accomplish since the network reconstruction has a mhlegesunt of biological
and biochemical detail.

Integration of three T-cell responses, the full B-cell responddtee regulatory action of key
growth factors was performed. All these subsets of the immesponse form a postulated,
coherent whole as described by FIRM, which by its integratedenstumore comprehensive
than any of the individual subsets and can be further expanded for addigiiean. FIRM

is thus capable of simulating both tumor and pathogen challengbg imtmune system,
either separately, or simultaneously. When FIRM is applied to atensuch challenges, it
displays appealing multi-scale (time, cellular events, etc.rackexistics. This was
demonstrated through case studies representing the formatioradichgon of a tumor, and
the response to TB infection. The challenges encountered in inbggthé FIRM network
and its component models are actually representative of the elsdfiaat can be encountered
when attempting to synthesize published mathematical models ohesigce whole. All
biological system models are usually delimited by the boundafit® system being studied
— they are not comprehensive because they cannot be. Their scopeallig limited to the
original question they were designed to answer. The biologicaklmgdcommunity is
currently entering a new stage: it already moved from thelal@went of individual models
to the definition of databases and repositories for these models shdoed; the next
evolution is to provide robust tools for on-demand component model integratisrtaskiis
addressed in this work. When performing model integration, care muzkdie not to reach
over the scope of the original component models, especially by to/ingdrporate or match



aspects that cannot be generalized. This is best decided on ay case lbasis. FIRM is a
starting point for the modeling community to consider these issues.

Given its current state and the iterative model building enablethdysystems biology
approach used in its development, FIRM can and should be expandedotmtafor
additional components of the immune response as new knowledge becamitaslea An
important area where FIRM could be expanded is the innate respmiading natural killer
(NK) cells. Models have been recently developed [6] to charactdhize response
component. It would also be useful to examine the behavior of FIRM ircaheext of
reinfection, through refinement of the memory B-cell models and &meln addition, a
mechanism for antibody-dependent cellular cytotoxicity (ADCCduld provide an
unambiguous link between the DB and the BL model and would enrich the §tRiure.
Perhaps the most important missing feature from FIRM is tiieation of the B-cell cascade
by the T-helper 2 cells, which is a known, essential mechanisnhiufororal response
initiation. All these remain important areas for further developmehbse investigation is
made somewhat easier by FIRM’s modular structure.

Since it is possible that a range of parameter values could psiwdar unperturbed state
values, another area of future investigation would involve sensitivitlysasaf the model.
To explore this, the model could be expanded to include stochastic betmasto account
for random variation of the state variables around a physiologitaloint. Additionally, the
model could incorporate expected daily fluctuations, such as e.gdiaimcahanges, to
account for the fact that basal states exhibit a range of beharnound a baseline. Such
analyses might be best performed when the model is used in dommuwith experimental
studies, such that development of FIRM (or similar models) canuppoged by joint
simulations and experimentation.

This work exemplified an approach to constructing large-scalgrattl simulators of
complex dynamic structures such as the immune system. Qatsytsrid approach bringing
together conventional differential equation-based models with methodspiedén systems
biology over the past decade. The implementation of this approadk te a postulated
representation of the immune system that incorporates the undessflotar processes and
cytokine regulation based on elements of mammalian physiology.imiétor provided by

FIRM is well suited to go through an integrated and interactive hindleling process with

experimental validation to reach an increasing state of compledimilar to what as has
been accomplished for genome-scale models of metabolism [37-39].
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